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THEORY OF TUMBLING BODIES ENTERING PLANETARY ATMDSPHERES
WITH APPLICATION TO PROBE VEHICLES AND
THE AUSTRALIAN TEKTITES
By Murrsy Tobak and Victor L. Peteréon

- Ames Research Center
Moffett Field, Calif.

SUMMARY

The tumbling motion of aerodynamically stable bodies entering planetary
atmospheres is analyzed considering that the tumbling, its arrest, and the sub-
sequent oscillatory motion are governed by the equation for the flfth Painleve
transcendent. Results based on the asymptotic behavior of the transcendent are
applied to study (1) the oscillatory behavior of planetary.probe vehicles in
relstion to aerodynamic heating and loads and (2) the dynamic behavior of the
Australian tektites on entering the Earth's atmosphere, under the hypothesis
that their origin was the Moon.

INTRODUCTION

When a body in space is separated from a parent body, in most cases the
separation process will leave the body with a measure of angular momentum.
The body then will tumble at a constant rate about its center of gravity for
the remainder of its sojourn in space. As it enters a planetary atmosphere,
however, its tumbling rate will begin to be affected by the aerodynamlc forces
and moments that come into play as the dynamic pressure builds up. If the
body's shape is such as to provide a measure of aerodynamic stability, the
increasing aerodynamic moment eventually will bring the tumbling rate to Zero.
Subsequently, the body will undergo an oscillatory motion of possibly large
but diminishing amplitude. It is of interest to analyze the sequence both in
connection with the design of vehicles destined to make uncontrolled entries
into planetary atmospheres and in connection with the study of ‘the motions of
extraterrestrial objects that have found their way into the Earth's
atmosphere. :

The equations governing a tumbling entry are inherently nonlinear and
hence difficult to treat analytically. The first investigation in this field
therefore was a numerical study (ref. 1) of a particular vehicle entering a
specific atmosphere (Mars'). Subsequently, an analytical treatment of the
problem was reported in reference 2. Results of that study showed that sim-
plifying approximations could be made, enabling the tumbling motlon, its
arrest, and the subsequent oscillatory motion to be governed by a single aif-
ferentlal equation. This equation was identified as the equation for the
fifth Painlevé transcendent. Following that study, another analysis was




carried out (ref. 3) in which the functional relationships existing between
the motion of the vehicle and the vehicle and planetary properties were
deduced from the asymptotic behavior of the transcendent.

The purpose of the present work is to combine the analyses of
references 2 and 3 in a unified treatment and to apply the results to two dif-
ferent types of problems. In the first, the tumbling entry of a probe vehi-
cle is considered, and it is shown how the results may be used to make rapid
estimates of the amplitudes of the oscillatory motion in relation to aerody-
namic heating and loads. In the second, attention is directed to an aspect of
the research on the origin of tektites. On the basis of the work of Chapman
and Larson (ref. 4) the Australian tektites are taken to be of lunar origin
and the consequent dynamic behavior of the tektites on entering the Earth's
atmosphere is examined within the context of the present analysis.

SYMBOLS
A reference area
B parameter defined by equation (43)
C parameter defined by equations (27)
Cp drag coefficient, dgzg
Cy, 1ift coefficlent, léiz
Cn .pitching-moment coefficient, pitchigizmoment
T dépendent variable, tan €
g acceleration due to gravity
G parameter defined by equations (27)
Hg stagnation-point heat transferred per unit area
I pitching moment of inertia about cenfer of gravity
I, moment of inertia about axis of spin

Jo(x) Bessel function of first kind of zero order
J,(x) Bessel function of first kind of first order

A reference length for moment coefficient evaluation

m body mass




X,%

Yo (x)

¥, (x)

Zo(x)

€e

Ne

integer, denoting number of complete tumbles

dynamic pressure, % oV2

distance from center of planet to body
dynamic-pressure parameter, BVi sin 75

time

horizontal component of flight velocity (sketch (a))
vertical component of flight velocity (sketch (a))
flight velocity (sketch (a)) |
independent variable (egs. (10))

axes fixed in space with origin at planet center (sketch (a))
altitude

Bessel function of second kind of zerb order

Bessel function of second kind of first order

875(x) + bYo(x)

angle of attack in planar motion (sketch (a))
density parameter (eq. (7))

flight-path angle, positive when depressed from local horizontal
(sketch (a))

dependent variable (eq. (16))

initial value of ¢ which causes body eventually to trim in backward
attitude

increment in initial value of e measured from ¢, (eq. (19))
angle of pitch measured from axis fixed in space (sketch (a))

angle of pitch measured from local horizontal (sketch (a))

initial value of x (egs. (10)), [- gg-qi'é% Cliygsx

ablation parameter (eq. (63))

atmospheric density




o atmospheric density at surface of planet

o
o resultant angle of attack in nonplanar motion (sketch (h))
¢ angular displacement of body from fixed space axis, 6 - @ (sketch(a))
W angular velocity of rotating liquid (sketch (e))
=0
() =)
( )y initial value
( )p value of quantity at first peak of oscillatory motion
( Vpax meximum value of quantity |
( Vpin minimum value of quantity
( Yenv envelope of oscillatory function
( Ymh guantity evaluated at maximum heating

AWATYSTS

The analysis leading to a differential equation that can be said to
characterize the tumbling entry problem was initially presented in reference 2.
That analysis will be given here again in a slightly amended form to bring out
its relevance to the study of the motions of extraterrestrial bodies as well
as of vehicles. As before, in order to reduce the problem to manageable pro-
portions, it is assumed at the outset that (1) the rotation of the planet and
of its atmosphere may be neglected; (2) the motion is planar; and (3) the
acceleration due to gravity is constant. Further assumptions and approxima-
tions will be introduced as necessary.

Eguations of Motion

Under the above assumptions, the equations governing the body's path and
its motions about that path may be written as

v - CpgA + mg sin y =0
myy + C oA+ m[(vZ/r)- gl cos y =0 (1)
I6 - gAlCy = O




The angles o, 7, 6, ¢, @ are defined
in sketch (a).

Simplified angle-of-attack
equation.- Numerical solutions of equa-
tions (1) indicate that after the body
enters the planetary atmosphere, there
is always an interval over which the
flight-path angle y and the flight
speed V do not change significantly.
Since this is the interval over which
any tumbling motion would occur, it is
an appropriate approximation to take

\\) Axes fixed in space, origin at planet center
X

Q

4
v

const = 74 } (2) Sketch {a)

.

const = Vjy
Then, since d = u/r, 6 will be essentially zero, so that
0~ & (3)

Next, it will be assumed that aerodynamic damping-moment terms are negligible
over the range of interest, so that the aerodynamic moment in equations (1) is
a function of angle of attack only. This, in conjunction with equation (3),
enables one to consider the last of equations (1) independently of the other
two. That equatbtion becomes

i - 2 q(t)p(a) = 0 ()

Aerodynamic restoring-moment coefficient.- As a body tumbles, it sweeps
through the entire angle-of-attack range. The aerodynamic restoring-moment
coefficient therefore must be specified over that entire range. Consider
first a vehicle intended to act as a planetary probe. It is reasonable to
anticipate that heating and stability considerations will dictate the choice
of its shape, hence, that it will be short with a conic profile. Also, in
order to minimize the amount of heat protection required, it is advisable that
the vehicle be statically stable in one trim position only. In reference 1 it
was found that the latter requirement could be fulfilled by the sddition of a
convex afterbody to the original conic forebody. Inspection of the experi-
mental results collected in reference 1 for a vehicle of this shape reveals
that the aerodynamic restoring-moment coefficient as a function of angle of
attack is approximately a sine wave. Accordingly, it will be assumed that for
the probe vehicle, Cy(a) in equation (4) may be approximated by

Cm(a) = Cmpyy Sin o (5)

where Cpygy 1S presumed to be available either from experimental data or,
for example, from Newtonian impact theory. The choice of equation (5) as an
appropriate form for the aerodynamic restoring-moment coefficient may be
arrived at from another point of view. With the addition of a convex after-
body, the shape whose aerodynamic restoring-moment coefficient is reasonably

p)




well approximated by equation (5) may, with a 1little imagination, be thought
of as a modification to g sphere. Now it is easy to see that a sphere with
its center of gravity displaced from its center of volume has, without
approximation, precisely equation (5) as the form of its aerodynamic
restoring -moment coefficient. In this light, therefore, it is not surprising
that equation (5) should appear as the appropriate choice. In this light
also, consider the tektites found in.southeast Australia. As pointed out in
reference U4, the primary shapes of about 80 percent .of them, that is, their
shapes on entering the atmosphere, were undoubtedly spheres or spheroids.
The aerodynamic restoring-moment coefficient for a perfect sphere is, of
course, identically zero; buf with a small amount of oblateness which may be
considered as an equivalent displacement of the mass center from the center
of volume of a perfect sphere, the tektites then would have had aerodynamic
restoring-moment coefficients of the form of equation (5). It is this fact
that places the study of their motions within the framework of the present

analysis.

Dynamic-pressure history.- Consistent with the approximations underlying
equations (2), the altitude history of the body as a function of time is

Yy -y = —Vit (6)

where

vy =V osin yy

The assumption that the planet's atmospheric density varies exponentially
with altitude

p = poe_By (7)
then gives for the dynamic pressure over the range of interest
a(t) = qgePVi® (®)
with
1 2 -Byi

Alternatively, if a precise time history of the dynamic pressure is available,
a more accurate estimate of 4 and Bv; may be obtained by fitting the best
straight line to the initial portion of the dynamic-pressure history plotted
on semilogarithmic paper. In this regard, it should be clear that equa-
tion (8) reveals one of the apparently more severe limitations of the present
analysis, namely, that it can be expected to apply only over the portion of
the time history in which qg(t) increases monotonically. However, it will be
Tfound that this interval encompasses not only the interval over which tum-
bling occurs, but also the subsequent range over which the oscillatory motion
begins and is reduced to small angles. The results of this analysis should
be suited to act as the connecting link between the body's initial behavior
and the behavior described by the results of analyses in which the linear
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approximation to the aerodynamic restoring moment has been introduced (ref. 5,
e.g., which is applicable after the oscillatory motion has been reduced to
small angles).

Transformed equation.- Inserting equations (5) and (8) into equation (k)

gives
" vit ’
& - q4 %% Crn eB 1" sina =0 (9)

which will be taken to be the differential equation characterizing the tum-

bling entry problem. However,a transformation of equation (9) yields a form
that more quickly shows the nature of the solution. Let '

Bvy =

S
Al ks P
9 T Cmmax <%é> (10)

- est/2

i

ER k]

Equation (9) takes the form

o' (x) + sina =0 (11)

a(x) + >

with the initial conditions

i
2

alk)

2. (12)

a' (k)

it

where, for convenience, a{k) is presumed to lie within the range - < a(n) < x.
Note that all the parameters of the problem have been concentrated in the con-
stant kK and the initial conditions. Equations (11) and (12) indicate that
all combinations of body and planetary properties yielding the same value of

k and the same initial conditions a(k), a'(k) will yield identical solutions
for o as a function of x, though not necessarily as a function of time.

The independent variable x may be given a physical meaning when it is noted
that, within the approximations made, it is proportional to the square root of
the dynamic pressure (. -

The‘Painlevé Transcendents

The substitubion w = sin /2 in equation (11) transforms it to

w'(x) = L(w)p® + M(x)p + N(W) . C(13)




where

aw

P =3

\J
M) = o

1

M(X) =-;{'

N(w) = w(w2 - 1)

In reference 6, it will be found that equation (13) is of the form studied by
the French mathematician Paul Painlevé around 1900. It is categorized mathe-
matically as being a member of the general class of second-order differential
equations whose solutions have fixed critical points (i.e., no movable branch
points or essential singularities). This class has been shown to possess 50
members. Of the 50, all but 6 are integrable in terms of known functions.

The remaining 6 define new functions, termed "Painlevé transcendents." The
substitution W = (w + 1)/(w - 1) casts equation (13) in the form
1 1 W! W+ 1
" - w2 (/= ] - — -
W'(x) =W (2w+w-1> X 2ww_l> (1h)

and it will be seen in reference 6

that equation (1L) is one of these,
namely, the fifth (with, in Ince's
notation, o =B =7 =0, & = -2).
Unfortunately, aside from this categor-
ization and a comprehensive examination
of the asymptotic behavior of the first
Painlevé transcendent (ref. 7), no sub-
sequent analyses of thelr properties

Fif) seem to have been published.

Mechanical Analogy

Before proceeding, let us first
consider a simple mechanical analogy of
equation (9) whose behavior is, in
effect, intuitively obvious. By this
means, the range and character of
motion governed by the equation can be
revealed relatively simply.

Consider a small bead constrained
Sketch (b) to slide, without friction, on a circu-
lar path in a vertical plane. Let a
time-dependent force F(t) be exerted
downward on the bead. This situation
is illustrated in sketch (b). Equating




the torque about the center of the circle to the bead's rate of change of
angular momentum gives

@+%[g+L$:l}sin¢=o (15)

Thus, if g+ [F(t)/m] is caused to vary in proportion to the body's dynamic
pressure history, the motion o(t) governed by equation (15) will be analogous
to that of the body with ¢ playing the role of <.

For convenience, let @ = O (the bottom of the circle) at t = 0. Now
give the bead an initial velocity gufficient to carry it several times around
the circle. Fach time the bead traverses the circle, ¢ will be counted as
having increased by 2rx. This, of course, corresponds to one complete tumble
of the body. It is clear that, because F(t) increases continually, more and
more of the total energy will be in the form of potential energy each time the
bead nears the top of the circle. Eventually, therefore, the bead will not
have sufficient kinetic energy to carry it over the top. At this point, it
will reverse direction, slide down past the low point, and proceed to oscil-
late about the low point. Again, because the amplitude of the restoring
torque grows indefinitely with time, the amplitude of oscillation will dimin-
ish and the frequency will increase with time. The final value of ¢ will be
a multiple of 2¢x. This behavior is illustrated as curve A in sketch (c) for
a case where the bead has tumbled twice.
Note in the sketch that once tumbling is 5=
arrested, the bead's amplitude of oscil- < o~
lation about 2nw cannot exceed .t 4 N
For a range of successively smaller ini- 4///
tial velocities, the behavior of @ (t) 3 = "
will be qualitatively similar to that ° ,, / 7\ 8
just described, the tumbling in each /// N4
case being arrested when ¢ 1is between ” P
(n - 1)x and (2n + 1)x and the subse-
quent oscillation being about 2nm. 0 -
Eventually, however, as the initial
velocity is successively reduced, a Sketch (c)
specific initial velocity will be
reached for which the kinetic energy
near the top of the circle (i.e., ¢ = (2n - 1)x) is just sufficient to enable
the bead to reach the top and come to rest there. As the top is a position
of unstable equilibrium, the bead cannot oscillate about that position, but
must approach it uniformly from below. This is shown as curve B on
sketch (e). TFor a slightly smaller initial velocity, the bead will not

1Tt will be observed that this description of the arrest of tumbling does
not entail the presence of aerodynamic damping. This contradicts a result
presented in reference 8, in which the cause of the arrest of tumbling is
attributed to a dissipation of rotational energy through aerodynamic damping.
The author of reference 8 is led to this conclusion by the erroneous assump-
tion that the net change of potential energy over one complete revolution is
small enough to be neglected.




surmount the top and, hence, must oscillate about the next smaller multiple
of 2r (i.e., (2n - 2)x). This is shown as curve C on sketch (c). Again,
there will be a range of successively smaller initial velocities for which
the bead will oscillate about (2n - 2)x, eventually terminating with an ini-
tial velocity that brings the bead to rest, without oscillating, at (en - 3)n

(curve D).

To summarize this discussion as it applies now to the body, one observes
that for any initial angle of attack o3 there will be a range of values of
initial angular velocity &g that will cause o eventually to oscillate
about a given value of 2nr. This range of initial angular velocities is
bounded by the two specific angular velocities which, for the same ai, cause
o to come to rest without oscillating at (2n + 1)x and (2n - 1)x. The latter
cases, where the body comes to rest in a position of unstable equilibrium, are
somewhat unrealistic in practice. They can be important in analysis, however,
as they serve to define the multiple of 2x about which o eventually

oscillates.

Properties of the Transcendent

Although it is possible to obtain approximate analytical representations
of the motions just described (cf. ref. 2), these solutions cannot be extended
far enough to cover all cases of interest. In particular, they begin to fail
as they approach the condition for which the body tends to dwell near a posi-
tion of unstable equilibrium. On the other hand, it is not useful merely to
present a catalog of numerical solutions for the Painlevé transcendent, as a
separate solution would be necessary for each pair of initial conditions and
this would require a prohibitive number of solutions. Alternatively, analysis
can point the way to obtain a limited number of generalized numerical results
from which most of the properties of interest can be derived. This will be’
the objective of the present section. ‘

Definition of parameters.- Consider equation (ll), and to bring in
evidence that for the oscillatory solution, @ - 2nx as x - ©, let

o = 2ng - 2617 | - (16)

where n 1is an integer, denoting the number of tumbles completed over the
range of tumbling. As indicated in the preceding discussion, if its value is
required, it must be determined from the nonoscillatory solution (cf. ref. 2).
In the present study, however, it will not be necessary to know the cumulative
value of «, but only its value relative to the final equilibrium position
2nn .. Hence, n need not be determined. It is convenient to retain the symbol
o Tfor designating angle of attack, but in doing so, henceforth we shall
actually mean o -£nn, or interchangeably, -2e¢. The equation of motion in
terms of € Dbecomes ' '

e . ' ‘
e" + —+ sine cos € =0 (17
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where now € - 0 as x = ®, Consider a
sequence of solutions of equation (17)

in which the initial velocity e'(k) is

held constant and e(k) is allowed to — 72
vary. A typical sequence is shown on:

sketeh (d). Observe that for the given

¢'(k), there is a unique value of e(x) ° XPmink x
within an interval of =« that will ///// /

bring the motion to rest without oscil- 2 ; ‘ ‘
lating at € = -n/2 (corresponding in 4¢¢¢4/ .

« to an odd multiple of =). This €
motion is shown as curve A in sketeh (4), .
and its initial value will be called the
critical angle, eq(k). It should be
clear that the curve labelled B is iden-
tical to curve A and describes the same
event, as do any two curves in € whose &'7
initial velocities ¢'(k) are the same x=K

and whose initial values are separated

by a multiple of =n. As is evident.from ' Sketch {d)

the sketch, all possible solutions for a.

given e'(k) are included within and

bounded by the nonoscillatory solutions shown as curves A and B.- Now in. most
applications, the questions of greatest interest will be: When does tumbling
effectively stop and what is the nature of the subsequent oscillation? Both
questions can be answered by defining conditions at the first peak of the
oscillatory motion.2 ~As shown on sketch (d), a locus of such points can be
drawn which then intersects the first and largest peak of every one of the
oscillatory motions. TFor any e(k) between - €, and €, + w, let €p Dbe the
value of €. 'at the first pesk and x(e,) be the value of x at the first
peak. -Functionally, ep &nd x(ep) are dependent -on the initial conditions;

that is, ep(e(k),Kef(K):“) I
x(e(k),ket (k) ,k)

For entry from without the atmosphere, for which k - 0, it can be shown that
the functional relationships (18) no longer depend on k. Further, it will be
found convenient to show the dependence on e(k) as a dependence on an incre-
ment in . e(k), the difference between e(k) and the critical angle €c. Thus,
let ‘ ‘ '

Locus of first peaks, x=x(€p)\
. N,

N\,

A Prain

- (18)

1]

X((‘?p)

. Coeee) e )
For entry from without the atmosphere, then': ' s .
) R | 'v€p>=‘€p(&i/s,ﬁéi)‘r_ ' (26)\
x(ep) = x(&i/e,0e1)" B

270 be precise, tumbling actually stops earlier than at the first peak, -
namely, at the value of x for which e'g(x) = cos® € (cf. ref. 2). However,
the difference between the two coordinates generally is not great and the
location of the first peak is a physically more tangible parameter to charac-
terize the end of tumbling.
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since

ke'(k) = -G3/s
Note that these functional relationships are independent of all body param-
eters. They indicate the existence of single solutions applicable to all
cases. Thus, it is practical to evaluate them numerically once and for all.
This has been done and the results are presented on figures 1 and 2. 1In an
entry from without the atmosphere, all values of "Aei are equally probable;
however, the values of primary ccncern are those which lead to the largest
first peaks of oscillation, for the subsequent oscillation amplitudes will

-90 1= = == ====———]
N~ -
Y Z
M z] 14 I
feotert R4
71717
-sofd A€ = 0.05°4; Y
- L2075 =
o soodd =
1 1.00°¢ L i
1] 2.00° 2
-70
€(Xprnln)
Y | et —_—— = - ]
-60 y L = = s
4 et henripet - bt 1
- - T = T =t
== 1 T P A TS T T T
T e T (I A€ = 179.95°
e A SEFRTR 179.80°
>0 5 i r 1 179.00°
4 €Prmin 3 178.00°
€p S 176.00°
-40 /
-30
Fi
-20
]
]
-10
i
J
o 2 4 6 8 10 12 14 16 18 20
2a;/s

Figure 1.- Values of € at the first peak of oscillation as a function of initial angular
velocity.
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Figure 2.- Values of X at the first peak of oscillation as a function of initial angular
velocity.

then be largest through the high heating and loading portions of the trajec-
tory. Reference to sketch (d) will show that the largest first peaks occur
when Aey is near zero and again near %, and values of ep and x(ep) for
these ranges of Aei have been particularly stressed in figures 1 and 2. It
will be seen also on sketch (d) that there exist two solutions of special sig-
nificance. One of these gives the minimum possible value of x for which the
first peak can occur. It is denoted by Xpin and e(xpmin) on figures 1 and
2. The second special solution leads to the smallest possible value of € at
the first peak. It is denoted by €Puin and x(epmin) on figures 1 and 2. The
latter solution is particularly important since, as will be shown, it may be
used to establish a lower bound for the envelope of oscillatory motion. That
this minimum angle of attack at the first peak of ogcillatory motion must be
different from zero will be evident when it is recalled that all of the rota-
tional energy of the body must show up as potential energy due to angle of
attack when the body pitch rate is zero.

Asymptotic solution for zero initial pitch rate.- With the maghitude and
coordinate of the first peak of oscillatory motion defined, it 1s now possible
t0o treat the oscillatory motion relatively simply. In effect, the problem has
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been reduced to the case of a nontumbling body which begins its oscillatory
motion at x(eP), a particular value of x, with the initial conditions
€i = €p, €i' = 0. Let £ = tan e. Equation (17) becomes
(3= 1
= S S (21)

f"
1+ 2 X

Noting the resemblance of equation (21) to the equation for the Bessel func-
tion of zero order, one may cast equation (21) in the form of an integral
equation involving the Bessel function by means of the method of variation of
parameters. Thus,

£ =Zo(x) + 5 f £1(6)[T0(x)¥0(t) - Yo(x)Jo(t)]lat (22)

with
or(x)£'23(x) B

1+ £3(x)

Zo(x) = 8I5(x) + bYo(x)

o
It
&

-5 f £1(E)Yo(8)at

x(ep)
| > (23)

P=bty f £1(8)T,(t)ae
X(Ep)
a = - %~x(ep)Yl(x(ep)) tan ep

o
!

= g-x(ep)Jl(X(ep)) tan ep

4

-1/2 as

The integral in equation (22) can be shown to diminish faster than x
x = o, and hence the asymptotic behavior of f£(x) is f(x) ~ Zo(x). Values
of x in the portion of the trajectory of primary interest, where aerody-

namic loads and heating become significant, are sufficiently large that the

asympbotic behavior of Zb(x) may be used. Then, for large x

£(x) = J%f» % (82 + b2) sin <% % + g) (2k)
where

b = tan™t

ot ol

1k




The envelope of oscillation is given by
1 2 /-2, T2
tan € = = —(a= + b 2
( Jenv FIRE: ( ) (25)

Since for small values of ep, a - a, b~ b, it is convenient to normalize
equation (25) as follows:
(tan €)env - _l_ a -+ b ' (26)

Z (a2 + 1) Jx 8% + 07
T

t
Le e w

where

]
t

= G (ep,x(ep) )

- > (27)
= x(ep) [ 5 [¥22(x(ep)) + 32 %(x(ep))]

Q
1

where

¢ = C(x(ep))

Then equation (26) takes the simple form

Jx (tan e)env

C tan €p

-G (28)

Equation (28) is the correct asymptotic expression for the envelope curve of
tan € in terms of the parameter G. Unfortunately, G cannot be evaluated
analytically but since it is dependent upon only two parameters, €p and x(ep),
it is practical to evaluate it numerically for a wide enough range to suffice
for all conditions of interest. This has been done and the results are pre-
sented in figure 3.3 For convenience, the parameter C has also been evalu-
ated and the results are presented in figure 4. With G determined, equation
(28) is a very general expression for the body's envelope of oscillatory ‘
motion. Observe that it is independent of all body parameters. It is spe-
cialized to a particular case by relating x to some physically significant
parameter such as altitude, fraction of maximum dynamic pressure, or fraction
of maximum aerodynamic heating. Examples of these relationships will be given
in the next section. :

3The origins of the curves for x(ep) = 10 and x(ep) = 20 have been
displaced for clarity.
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Figure 3.- Variation of the parameter G with €p for several vdlues of x(ep).

Finally, consider the case x(ep) - 0, which corresponds to the
nontumbling entry of a body from without the atmosphere. Inspection of the
results of figure 3 shows G +o0 be independent of x(ep) for values of x(ep)
approaching zero. Further, C (eqs. (27)) is also independent of x(ep) for
small x(e ), as may be shown when the Bessel functions in C are replaced
with their initial behavior approximations. Thus,

c a;/? for x(ep) - O (29)

With these results, equation (28) may be further simplified for the case of a
nontumbling entry from without the atmosphere. The envelope of oscillatory
motion is given by
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(tan €)gpy = ’f% G(ep) tan e (30) °

It is of particular interest to note the
general nature of the solution offered 4
in equation (30). The solution written

as a function of the coordinate x is
independent of all body parameters, 3
planetary properties, and initial condi- va
tions except initial angle of attack. c v

Useful Relations

Within the assumptions of this
analysis (V = Vi,y = 73), the dynamic
pressure varies as

0 q 8 12 16 20
. s i xlep)
a/q. = eBVl sin 7t (31) P
1 Figure L4.- Variation of the parameter C
Hence, from equations (10) with  x(ep)-
X _ L

so that the envelope expression (eq. (28)) may be rewritten

-1/4

(20 e _ 2 (3) -

" tan €, €p

Tt will be noted that this form is in agreement with the asymptotic form (for
negligible aerodynamic damping) previously derived in reference 5 for the
case of small initial «. The latter derivation is not dependent on assump-
tions concerning the variations of either flight-path angle or flight veloc-
ity. Hence, equation (33) can be extended, and the restrictions underlying
its development circumvented, by the simple expedient of using a more precise
expression for q/q in place of eguation (31). The results of reference 9
are particularly useful in this regard as they permit one to write this ratio
in a variety of forms involving physically significant parameters.

Envelope of oscillation in terms of altitude.- From reference 9

le-(CDDOA/ZBm Sil’l ')’i)e-By (3”)

\ V=YV
so that

2 -—
o _ PoVs -By_-(Cppoa/Bm sin yq)e ™V -
a3 245
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Substituting equation (35) in (33) gives

Bl 4
(tan €)eny CG[_B2 sin® y;I eBye(CDpoA/Bm sin y;)e By} (36)
tan ep 20oACm

where
€p = €p<di/s:A€i) s C = C(X(ep)) ’ G = G<€pyx(€p))

It should be kept in mind in using equation (36) that x has been assumed to
be sufficiently large that the solution is indeed described by its asymptotic
form. Thus, there is implied an upper bound on y which will exclude values
of y 1large enough to cause (tan e)env/tan €p to exceed or approach unity.

Envelope of oscillation in terms of dynamic pressure.- From reference 9
the maximum dynamic pressure is

o - A (= (& (37)
- Ymex T 2e \F sin 75/ \CpA 37

Writing q/q; as

‘ q,
9 _ _g mex (38)
G max U

and substituting equations (37) and (38) in (33) gives

1/ 4

© CpA\ @ |
( iini;“ - CG[' %(H‘ér%m‘a';)(ﬁe sin m(—i—é) mZXJ | (39)

Envelope of oscillation in terms of aerodynamic heating.- The results of
reference 9 provide the following expression for fraction of maximum
stagnation-point heating rate

(ﬁf? _ _Blaye) (/2)(a-e ) (10)
max
where

Ly =y -¥1

y1 = altitude for maximum heafing rate (41)

1

3CpPoA >

vi =g log (ém sin 74




Equation (40) cannot be inverted to solve for 4y, so that a graphical solu-
tion is necessary. This is presented in reference 9. Substituting equa-
tions (k1) in (36) gives ‘

(tan €)eny ] CG[_ %(9%3([3 i 7i)<_1__>eB Aye(l'/s)e‘BAV}

tan €p AZCmmax

1/ 4

(42)

where B Ay can be related to ﬁs/(ﬁs)mak through the graphical solution
provided in reference 9.

APPLICATIONS

As illustration of their use, the preceding results will be applied in
two different connections; first, as an aid in the design of vehicles intended
for use as planetary probes and, second, as an adjunct to the research into
the origin of tektites. As a preliminary to both applications, however, a
method will be presented that will be of general use in placing reasonable
bounds on the oscillation envelopes of initially tumbling bodies.

Bounds on Oscillation Envelopes

A body making an uncontrolled entry into a planetary atmosphere
generally will be tumbling at an essentially constant rate prior to entering
the sensible atmosphere. Because of the tumbling motion, generally it will
not be possible to specify the angle of attack at the precise moment aerody-
namic effects begin to influence the motion. Therefore, an uncertainty in the
angle-of -attack history within the atmosphere will necessarily prevail. How-
ever, it is possible to relate the parameters describing the body and its
trajectory to the probability that the body will eventually undergo oscilla-
tions bounded by specified envelopes. Thus, the uncertainty in the angle-of-
attack envelope history within a given atmosphere is bounded below by a
minimum possible for a given initial tumbling rate and above by a maximum for
which the probability of exceeding the maximum can be specified.

Consider first the lower bound. The results giving envelopes of
oscillation in terms of aerodynamic heating and dynamic pressure may be put
into a particularly convenient form. First, let

CpA : I
= (B etn 70idi) )
Then, with the use of equations (39) and (L42), the values of the minimum pos-

sible envelopes evaluated at, respectively, maximum dynamic pressure and
maximum heating may be given the form
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Note that, aside from the parameter B, equations (4k4) contain terms involving
only the initial tumbling-rate parameter Qdi/s. Thus, if values of B are
chosen for a wide enough range to cover all cases of interest, these relations
may be evaluated once and for all. The results are presented on figure 5.
Now, it is further noted that the following relations hold

i}

w
®
I_l
~
&
N
c+
o
=
(]
3

1/ 4
(tan €)min env _ <émag>
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[(tan €)min env}maX . &

1/ 4

(L5)

(tan €)min env eBAVe(l/S)e-BAy

el/3
(tan €)pin env J
X heat

and that these expressions are independent of all parameters relating to the
body. These functions are presented graphically in figure 6. The minimum
possible envelope of oscillation in terms of fraction of maximum dynamic
pressure or fraction of maximum heating can be computed from the graphs of
figures 5 and 6. A relationship between the minimum envelopes and envelopes
having a specified probability of being exceeded will now be established.

A study of sketch (d), for a given initial tumbling rate, suggests the
possibility that the asymptotic behavior of the envelopes of oscillatory
motion for two different initial angles of attack might be identical.
Inspection of equation (28) reveals that this will indeed be the case if the
term CG tan ep 1s the same for two different initial angles of attack. Now
it is noted that this product is a function only of Aej for a given tum-
bling rate and that for each value it takes on for Aej near zero there is a
corresponding Ae; near wn for which it has the same value. Values of Aej
near zero correspond physically to the body being oriented in an attitude
slightly less inclined to the stream than the critical attitude and values of
Aei near w correspond to the body being at a slightly greater inclination
than for the critical; an appropriate interpretation of these values gives
the probability of exceeding a particular envelope. Thus, suppose that a
particular value of CG tan ep is chosen and that this same value results
from both Aej = 1.5° and Aei = 179.5°. For values of Aei between 0° and
1.5, or between 179.5° and 180°, the subsequent envelopes of oscillation
will exceed those for all Aeqi between 1.5% and 179.50. Then there is a
2.0° range of Aei out of a possible 180° range, or a probability of 1/90
that the envelope for the chosen value of CG tan ep will be exceeded.
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Figure 5.- Minimum possible envelope values of tan ¢ at maximum heating and maximum dynamic
pressure as functions of initial angular velocity for several values of the parameter B.
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of maximum heating and maximum dynamic pressure.

The relationship between an envelope of oscillation having a specified
probability of being exceeded and the minimum possible envelope is independ-
ent of the characteristics of the body. One observes this by forming the

following ratio, using equation (28)

(tan €)epy C(Gp)G(ep,x(ep)) tan ep

(tan €)min env

and noting that the right side is dependent only upon the tumbling rate
parameter Qdi/s. This relationship has been evaluated for several probabili-
ties and the results are presented on figure 7. Application of the results of
figures 5, 6, and 7 to make estimates of the upper and lower bounds to the
envelope of oscillation is illustrated in the following section.

(46)
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initial angular velocity.

Motions of Planetary Probe Vehicles

To illustrate the use of the results and to assess their accuracy, a
sample calculation will be made and compared with results in which no approxi-
mations were made either to the equations of motion or to the aerodynamic
forces and moments. The comparison will be made with the results of refer-
ence 1 for a vehicle making a tumbling entry into the martian atmosphere.

Calculation of parameters.- The vehicle studied in reference 1 had the
following physical properties:

A = 8.296 £t2

I = 5.6 1b-ft-sec?

1 = 3.25 ft

m = 6.685 1b-sec?/ft
Cp = 0.650

Crpyne = -0.162

where Cpy,. Was evaluated so that the area under a half-cycle of the approx-
imating sine function curve equalled that under the actual pitching-moment
variation. The martian atmosphere and the entry conditions were given as
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B = 2.15x107>/f%
V; = 21,042 ft/sec
vi = 41.5°
&; = 0.2094 radian/sec
leading to
s = 0.30/sec
244 /s = 1.396
B = -1.432x107°
Determination of angle-of-attack
80 | | | l : | envelopes. - The minimum possible enve-
Decreosing altitude Present analysis lope of oscillatory motion in terms of
coh | === Exoct numerical solution aerodynamic heating rate, subsequent to
o \\\ O,,Envelope whose probability of being the arrest of tumbling, is _determined
% 40 ‘~<::’e““d“'5275%60 in the following way: Enter figure 5
& ‘\&<;;:;_~§~ with the given values of 2ai/s and B
20 _ S to obtain [(tan €)min envlmax hest -
"““GZFﬂffFiffﬁfemﬂ”e Use this value in conjunction with fig-
o [T =T ure 6 to construct a graph of (a)min env

2 4 8 BH/ﬁi & & 4 2 versus Hg/Hg .- Results of this cal-
s7Tsimax culation are presented on figure 8 and
Figure 8.- Envelopes of oscillatory motion the exact results are shown for compar-
as a function of fraction of maximum heat- ison. One obtains the envelope having
ing rate for a Mars entry; initial angular ] s
e e Do B s a probability of g.75/36o of being
exceeded by entering figure 7 with the
given values of 2&i/s and probability;
this gives the ratio of the envelope

values of the upper and lower bounds of tan €. The upper bound envelope is
constructed from the product of this ratio and the already obtained minimum
envelope. Results of this calculation are also shown on figure 8 and compared
with the exact results. - It is noted that the agreement between the exact
result and that of the present theory is within 10 percent throughout.

Motions of Tektites

Origin of tektites.- From the exhaustive studies of the nature of the
curious glass objects known as tektites (see ref. 4 for an extensive bibliog-
raphy), it has been known for a long time that the tektites experienced two
separate periods of intense heating. During the first, heating was suffi-
ciently intense to melt the objects completely, whereas in the second, heating
was sufficient only to melt the thin surface layers of otherwise solid objects.
After the extensive investigations of Chapman and his colleagues (refs. L and
10), in which the ring-wave markings and coiled flanges that are such distinc-
tive features of the Australian tektites were reproduced with fidelity in
wind~tunnel experiments, there can be little doubt that the second period of
melting occurred as the result of a hypervelocity passage through the Earth's
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atmosphere. Further, from a minute study of the striae lying beneath the
tektites' surfaces, combined with the observed final tektite geometry, the
authors of references Lt and 10 have been able to deduce the probable speed and
flight -path angle of these objects as they entered the atmosphere, and they
nave concluded that the entry conditions deduced were compatible with those
for objects whose origin was the Moon. If thig conclusion is accepted as cor-
rect, the following sequence of events may be hypothesized: The Moon is
struck by a meteor, the lunar surface at the point of impact is vaporized and
streams of molten lunar surface material are ejected outward from the crater
at very great velocity, at such great velocity indeed that the molten material
has sufficient kinetic energy to escape the gravitational field of the Moon.
Subsequently, some of the lunar material traverses a path in space that brings
it within a corridor permitting capture by the Farth's gravitational field.
Sometime after its ejection from the Moon, the stream of molten material
breaks into segments which tend to contract into characteristic shapes by the
action of surface tension, congeal, and solidify as they lose thelr heat by
radiation. The tektites then enter the Earth's atmosphere as solid bodies,
and, during their passage through the atmosphere, acquire by ablative melting
the characteristic ring waves and flanges that so distinguish them when they
are found on the Earth's surface.

Now, if this sequence did actually originate with a collision, it seems
probable that at least a portion of the lunar material should have acquired a
certain amount of angular momentum. The molten objects then would have found
themselves turning while in space and would have sought to assume the stable
figures consistent with their turning rates. They would have been turning,
or tumbling, also as they entered the Earth's atmosphere, but at least the
Australian tektites with few exceptions could not have been either tumbling
or oscillating with large amplitude during the period of greatest heating or
the patterns characteristic of ablation on bodies with fixed orientation
would not be present on the many existing specimens. Therefore, their tum-
bling motion had to have been arrested and their subsequent oscillatory motion
reduced to quite small amplitudes before their period of greatest heating, and
it is the consequences of this requirement that can be studied by means of the
present analysis.

Figures of equilibrium.- In order to apply the results of the preceding
sections, a value of initial angular velocity must be assigned to the body.
Further, the body shape should be chosen to be compatible with the assigned
value of angular velocity, for, as mentioned above, the body in its molten
state will tend to assume a figure consistent with its turning rate. Let it
be assumed First that the viscosity of the body in its molten state is suffi-
ciently low to permit the stable figure to be attained before the body solid-
ifies.® The form attained may then be calculated. In effect, the problem is
analogous to the famous problem in cosmogony of determiniﬂg the figure of
equilibrium of a rotating liquid mass (cf., e.g., ref. 12) except that the
force tending to contract the mass is surface tension rather than gravitation
(it is easy to show that for bodies the size of tektites the mutual attraction

Tt is probable that this was the case only for the tektites found in the
part of the strewnfield covering southeast Australia (cf. ref. 11). The suc-
ceeding analysis is therefore limited to that particular group of tektites.
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of the bodies' particles is negligible compared with the surface tension
force). The definitive analysis is due to Charrueau (ref. 13), but its essen-
tials aré repeated more accessibly in volume 4 of Appell's treatise on rational
mechanics (ref. 1b4). For present purposes, it suffices to note the following
results:

(1) 1In the absence of gravitation, the figure of equilibrium must have
cylindrical symmetry; that is, cross sections normal to the axis of rotation
are circles,

(2) The meridian curve for the figure of equilibrium is an elliptic
function dependent on a single parameter K® having the form

K2 = 5w?a®/8f (47)
i where
® 1liguid density
Do
w angular velocity
f surface tension
Meridian curve a radius of figure in equatorial

plane (see sketch (e))

(3) For K2 = 0O, that is, for
zero turning rate, the figure of equi-
librium is a sphere. Let its mass be
m and its radius R. A body of the
same mass with a small turning rate
will flatten at its poles. For KZ2<K1,
a | it is essentially an ellipsoid of
revolution. The meridian curve z(r)
(see sketch (e)) is approximately

Sketeh (e)
z % (1 - KB)Na? - r? ; K2 << 1
(48)
where, for the same mass m, a and b, the semiaxes of the ellipse, are
related to R by ’ X
2 3
SISO
3 a
o ) (19)
3
bzR[l -§K2<f—{>}
3 a
J
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and the mass and the moment of inertia about the axis are, respectively,

% %ﬂ (1 - ¥¥)a®p
(50)
2 .2
IZ a8 g ma,

(h) Tor increasing values of K2 the figure flattens progressively.
In the absence of an external pressure, however (i.e., no atmosphere), the
figure must remain convex and this requires K2 < 1. The value K2 =1
therefore constitutes an upper bound on turning rate for which the body will
seek cylindrical symmetry while in space. At this condition, for the same
mass m, a/R = 21/3, b/R = 0.543. The exact forms of the figures of equilib-
rium over the whole range of K2 from O to 1 are shown on figure 9.
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Figure 9.- Meridian curves of figures of equilibrium for a rotating liquid having the fixed mass
of a sphere of radius R under the action of surface tension.
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(5) 1In the absence of an external pressure, there are no figures of
equilibrium for K® > 1. Presumably in this case the body will decelerate
through a progression of elongating pear-shaped figures culminating in
separation at the weakest section.

In application to tektites, it remains to assign representative numeri-
ecal values to the physical properties appearing in the parameter K2. These
may be obtained from results given in reference 4. The density & of tek-
tite glass is given as 2.4 gm/cms. The surface tension f for glass of tek-
tite composition 1s reported as 360 dynes/ch A single representative mass
will be assumed and will be taken to be that for a sphere of 1-cm radius.
With these numbers, the limiting values of w and angular momentum for which
cylindrical symmetry is sought (K2 = 1) are, respectively, the order of
25 radians/sec and 167 dyne-cm-sec.

Probability of a tumbling entry.- It has been assumed that the body
attains a figure of equilibrium in space before it solidifies. As a conse-
gquence, it must rotate at a constant angular velocity about an axis through
its center of gravity, and that axis must maintain a fixed attitude with
respect to space-fixed coordinates (ref. 14). Hence, the angular velocity
vector also maintains a fixed inclination with respect to the velocity vector
and the body enters the atmosphere in this condition. An inclination of
exactly 90° corresponds to a tumbling entry as defined here, whereas an incli-
nation of 0° corresponds to a rolling motion around the velocity vector. Con-
sider first the consequences of a
purely tumbling entry for a figure of
equilibrium, that is, for a body having
cylindrical symmetry about the axis of
rotation, the latter being inclined 90°
to the stream. As shown on sketch (I),
the aerodynamic force on the body
0 vV always remains parallel to the velocity

vector and passes through the body's
center of volume. Barring the exist-
ence of a significant inhomogeneity or
asymmetry, the center of gravity is
coincident with the center of volume
Sketch (£) and the aerodynamic restoring moment
about the center of gravity is identi-
cally zero. Hence, the body in this mode is in a state of unstable equilib-
rium; a disturbing force whose moment vector is even slightly misalined with
the angular velocity vector will cause the body to depart from this mode and
seek a new state of motion in which it is stable. Now consider a case in
which the axis of rotation is inclined to the velocity vector at an angle less
than 90°. Sketeh (g) shows a view of the body in the plane containing both
the axis of rotation and the velocity vector. As the body has cylindrical
symmetry about the axis of rotation, its projection in this plane is invariant
with time; the profile is approximately elliptical as a result of the flatten-
ing the body has undergone while turning in the liquid state. The aerodynamic
force on the body lies wholly and continually in the plane; it is approxi-
mately alined with the stream, but passes through a point representative of
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the center of curvature of the forward
surface, a point which lies behind the
center of gravity. It is clear that

in this case an aerodynamic restoring
moment is developed about the center of
gravity that will drive the angle of
attack o toward zero. These consid-
erations make it evident that the prob-
ability that a figure of equilibrium
will undergo a tumbling entry is very - \0
remote. The stable state is with the 0
cylindrical surface broadside to the
stream, and for all initial inclinations
other than exactly 90°, the body will

tend to this state.

2
-

Nonplanar motions.- With tumbling
effectively eliminated as the normal Sketch (g)
mode of entry for bodies which are fig-
ures of equilibrium, consideration must
.be given to nonplanar motions in which
the angular velocity vector is initially fixed in space, inclined to the
velocity vector at some angle less than 900. It is possible, however, to
relate this study in a simple fashion to results already obtained here.

In reference 15, Leon treated
the problem of a spinning body entering
the atmosphere, but under the restriction , o
that the initial inclination of the
angular velocity vector from the velocity
vector be small. As initial inclinations
up to 90° are of interest here, the
results of reference 15 are of only
limited applicability in the present con-
text. A means of removing this limita-
tion has been found; however, as it is
suggested by the form of the results pre-
sented in reference 15, these will be
reviewed briefly before thelr extension
is presented. A sketch of the relevant
coordinates, adopted from reference 15,
is shown in sketch (h). The most impor-
tant angle is o, the inclination of the A
body axis 2z about which the body ’
rotates, to the velocity vector along
7. As the body has cylindrical symmetry Z Flight path direction
about the 2z axis, the aerodynamic force z Body axis of rotation
on the body is a function only of ¢ and o Resultont ongle of ottack
lies in the o plane. The aerodynamic Sketeh (h)
moment about the center of gravity there-
fore lies on an axis normal to the o
plane, or along the line of nodes. The
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angle ¢ in effect defines the move-
ment of the nose of the body about the
velocity vector. In space and on entry
into the atmosphere o is fixed in .
value and orientation, but as the aero-
dynamic moment grows, the o plane

//;:// ‘ x ();L\\Q\_~\\ will begin to rotate about Z causing
\\55:1{// Tleny the body nose to move in a diminishing
o

spiral. A typical o¢ history is
shown on sketch (i) both as it appears
to an observer on the Z  axis and as
Sketeh (1) a function of time. A very useful
o relation is found in reference 15,
namely, the ratic between the asymp-

_ totic behavior of the envelope of o,
(6)enys (cf. sketch (i)) to the asymptotic behavior of the envelope of o for
a planar, nonspinning, nontumbling entry. For the same entry conditions
(04 = ai, 61 = & = 0), the ratio is simply

(o) env _ ﬂv/z : -

(@Yeny 5/ tanh (xv/2) o (52)
IZ

T

where

<
i
wig

Thus, it is indicated that the ratio of the envelopes is a constant and is
increased by a factor dependent only on a single parameter v.

The simple form of equation (51) suggested the possibility that a similar
form would result even with the removal of the limitation to small values of
o;. This has been found to be the case. When the aerodynamic restoring-
moment coefficient can be expressed as Cmmax sin o, the extension of equa-

tion (51) to the case of arbitrarily large values of o3 1is of the form

(ten o/2) ) 1v/2 Glog,v) | oy ocos? a/a
(tan @/2)eny tanh nv/2 G(01,0) ° * (52)

In the present study, only small to moderate values of v need be cons1dered
and in this case the ratio involving ‘G 1s essentially unity. Then, as
before, the ratio of the envelopes is increased by a simple factor dependent
only on V. As the planar solution is already available (eq. (30)) ), equa-
tion (52) provides a simple means of studying the angle-of-attack behavior of
rotating bodies having cylindrical symmetry about the axis of rotation. In
effect, one need only study the simplest of planar problems, nontumbling
entry from without the atmosphere; multiplying the result by the factor in
equation (52 then gives the desired property of the rotating body
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In this light, consider the
nontumbling planar entry of the figure
of equilibrium with its cylindrical sur-
face facing the stream. On sketch (J),
a figure of equilibrium is shown super-
imposed on a sphere of the same mass sO
that their front faces are alined as
nearly as possible. If the front face
of the figure of equilibrium could be
alined perfectly with that of the sphere,
it is clear that the moment about the
center of gravity of the figure of equi-
librium would be of the form

Cm = 'CD(R ; b> sin d (53)

It is indicated, therefore, that for

small amounts of oblateness equation (53)

should adequately represent the pitching moment for the figure of equilibrium.
On the other hand, because of the fore-and-aft symmetry of the figure, the
pitching moment must be zero at o = n/2, so that equation (53) will not
apply for values of o in the immediate vicinity of ﬁ/2. With this range
excluded, equation (53) is applicable to the figure of equilibrium having
small oblateness. Hence, with Cp of the required form, equation (30) is
applicable and is rewritten here for convenience

sketeh (3)

(tan €)eny {2 ' '
tan ep = T;E G(ep) (5)‘|')
where ¢ = -0/2. It is convenient to rewrite equation (54) in terms of the

ratio q/th, where dpp is the dynamic pressure at maximum heating. We have
from equation (32)

Amh i
w2 =2 L - g ——q>—— ’ (55)
a1 Amn/ 95

From equations (35) and (41)
R e 1/ 3y;28 sin 71 <§%K (56)
so that x® Dbecomes, when equations (10), (53), (55), and (56) are used;‘

2 2 /s 1 m_9_>

As only small amounts of o6blateness are admissible, the figure of equilibrium
is essentially an ellipsoid of revolution for which the expressions for m and
b previously presented (eaqs. (47) through (50)) may be used.  Retaining terms
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only to the first order in K® gives

K2 K2 << 1 (58)

m
R-Db) 725 ;

WP

which relates the geometric properties of the body to the rotation parameter
K2, The envelope expression (eq. (54)) becomes

(tan Doy [2 1 (59)
tan € IRV G(ep)
P > 1/ 4 1/ 4
<;9 -1/3 _K_> o
9 BR sin 74 Uh

Finally, the envelope expression for the initially inclined rotating body,
(tan 0/2)apys is obtained simply from the product of equation (59) and the
factor given in equation (52). The result is

(tan 0/2) apy _ G(ep) (60)
tan ep K tanh = 1O /s
© BR sin 71> < m)

Equation (60) reveals an interesting result. It will be noted that both K
(eq. (47)) and v (eq. (51)) are linear functions of w. As tanh(nV/2) is
essentially unity for all values of vV greater than about 1.5, equation (60)
indicates that the effects on the envelope due separately to K® and v cancel
each other. On the one hand, increasing K2 corresponds to increasing the
turning rate of the liquid body, giving it a greater oblateness, and this in
turn leads to a larger restoring moment which makes the envelope subside more
rapidly. On the other hand, the inertial effect of the larger turning rate 1is
to widen the envelope. These two opposing effects cancel. The result is

- that, regardless of the turning rate, all bodies formed by turning, having the
same mass and the same initial inclination o4, will have identical angle-of-
attack envelopes. Although this result has been obtained under the restric-
tion of small turning rates, numerical solutions for larger rates indicate
that it remains essentially true for all rates up to the limiting value

(K8 = 1) for which a figure of equilibrium exists.

Consider the application of this result to the southeast Australian
tektites. Of all the round-form tektites that have been discovered in this
region, none have been reported, to the authors' knowledge, to have any more
than a small amount of oblateness; that is, in reference to figure 9, none
apparently have primary figures corresponding to values of K® greater than
perhaps 0.2. This means that if they had been formed by turning in the liquid
state, their turning rates had to have been small. The analysis above leads
one to expect that, as the tektites having small turning rates evidently were
able to survive their passage through the atmosphere, tektites having forms
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consistent with considerably larger rates should have been able to survive as
well since their angle-of-attack envelopes should have been essentially the
same. That such tektites apparently have not been found in southeast
Australia therefore cannot be attributed to their having failed to survive
their flight through the atmosphere, but must be charged to the mechanism by
which the tektites were formed. The evidence is, then, that this mechanism
was capable of imparting to the tektites only a very limited amount of
angular momentum.

Effect of ablation.- The analysis of the preceding section should ade-
quately describe the behavior of the round-form tektites over the initial por-
tion of their entry into the atmosphere. As soon as ablation begins, however,
the bodies undergo a marked change in geometry, and this must be taken into
account in the analysis of their subsequent behavior. This may be done quali-
tatively within the framework of the present theory in view of the following:
First, as in the preceding section, one need only study the case of planar
motion and then multiply the result by the factor given in equation (52) to
obtain the behavior of the rotating body. Second, in consideration of the
planar motion, it may be said that the previous analysis will hold over the
range of dynamic pressure from essentially zero to a value qg at which abla-
tion begins. Results of the ablation studies of reference I indicate that the
ratio qa/th varies somewhat with entry conditions and tektite size. For
entry conditions compatible with a lunar origin and for tektites the size of
those found in southeast Australia, results from reference U indicate a value
for the ratio of approximately 1/20. For convenience, let it be assumed that
a peak in the oscillatory motion occurs in the vicinity of this point. The
corresponding values of €p and x(ep) then may be determined from the preced -
ing analysis and will serve as the initial conditions for the ensuing motion.

As ablation begins, the surface
facing the stream will begin to recede,
increasing its radius of curvature (cf.
fig. 19, ref. 4). It is reasonable to
assume that, though the angle of attack
continually changes, the forward surface
will continue to present an essentially
spheroidal face to the stream. Hence,
approximately, the aerodynamic force on
the body will remain alined with the D et
stream direction and pass through the
center of curvature of the forward sur-
face. This is illustrated on sketch (k).
As the forward surface continues to
recede, its center of curvature moves
rearward. The center of gravity also
moves rearward, but less rapidly than the
center of curvature, so that the static Sketeh (k)
margin £ increases with time. The
result is that the aerodynamic-restoring
moment about the center of gravity retains
the form

Cp = -CDE sin « (61)
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but now Cp and especially ¢ are increasing functions of time. The equa-
tion of motion, equation (4), also retains the same form

Al
I

& - Cpéa(t) sin a= 0 (62)
where now I also is a function of time. However, for the spheroidal body
the changes in I and Cp are small enough to be neglected, or, in any case, I
and Cp may be combined with ¢ to give an "effective" value of that param-
eter. TFinally, since both ¢ and q(t) increase with time, it may be assumed
that, at least qualitatively, £ increases as some power of q, that is,

A
e % b, (o (63)
“ b (&

where £ and g, are, respectively, the static margin and dynamic pressure at
the beginning of ablation. On insertion of the exponential approximation for
g (eq. (8)), the equation of motion becomes

a - qa'%% CDgaes(H?\)t sin o = O | (64)

which retains the form for the Painlevé transcendent. In effect, the increas-
ing static margin causes the body to behave as though i% were & nonablating
body passing through an atmosphere with a larger density gradient than that
actually existing.

‘With the form of the Painlevé equation retained, all of the results
obtained previously for the planar oscillatory motion may be made applicable
merely by a change in notation. Thus, let

s =s(l+A\)
2
KS Al
<?> = -q, ~ CDEy (65)
T = Fc..es’c/g
The asymptotic behavior of the envelope curve follows from equation (28)
(tan €)py _ C(r)G(ep,k) (66)

tan €p \ﬁf

It is useful to cast this result in terms of the dynamié pressurevratio q/qﬁh
where, as before, g, is the dynamic pressure at maximum heating. The result
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is

(tan €) c(R)G(ep,k)

) hf% %ﬁ§>(l+X)/4<§ﬁ£>(l+%)/%v

env
tan €p

(67)

The‘parameter K may be related to the original coordinate x at‘thé begin-
ning of ablation through the expression o

X(ep)

K =T

(68)

Finally, the complete envelope curve for the planar motion, obtained from
equations (59) and (67) is multiplied by the factor .J(xV/2)/[tanh(x7/2)]to
give the desired result (tan o/2)env. Resulte obtained from the above analy-
sis are shown on figure 10 for several values of the ablation parameter A.
The body has the mass of a sphere of 30
1l-cm radius and a turning rate of '
1 radian/sec. Entry conditions are
those estimated in reference 4 to be
compatible with a lunar origin:

Vi = 11.2 km/sec :
: : . 10— ~
B = 0.1396 km™* \

A=5-

Tenvodeg

il
/

e}
7 = 20

The main results are considered to be
those shown on Ffigure 10(a) for an
initial inclination o3 of 40° since
if the initial inclination was truly
arbitrary, the greatest number of tek- 30 \\\\

tites should have entered the atmos~

phere with inclinations near the mean g
between 0° and 90°. Figure 19 of refer- :?2° N
ence L was used to establish a represent- v

ative value of A for tektites undergoing
ablation under nonoscillatory conditions: 10 N
Over the important initial period of . v .
ablation, during which time the radius of x=5"
curvature of the front face increases
very rapidly, A was found to be of the
order of It or 5. For the initially ’ o

. R . . . (b) o3 = 80

inclined rotating tektlte’ of course a Figure 10.- Envelopes of resultant angles of
smaller value must be expected, but it is attack of a rotating spheroidal tektite
seen on figure 10(a) that even a fraction for a range of values of the ablation .

s : s s . parameter A; turning rate
of the full amount is sufficient to reduce = 1 radian/sec. :

— | 3
[ ————
4 6 8 1.0
/9 mp
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|
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o to negligible proportions well before maximum heating. The results lead
to the conclusion that entry conditions compatible with a lunar origin permit
sufficient time for the greater part of the round-form Australian tektites to
aline themselves with the stream well before maximum heating, in compliance
with the physical evidence of their having undergone ablation under nonoscil-
latory conditions over the high heating portion of thelr trajectories. Shown
on figure 10(b) are results for an initial inclination of 80°. It is noted
that, if the same rate of ablation is allowed (A = 3) as that which brought
the body to negligible amplitudes in the case of a 40° initial inclination,
here the body still retains a residual amplitude as maximum heating is
approached, but of no more than a few degrees. Then in this case also, the
final stage of ablation occurs with the body in an essentially fixed attitude
with respect to the stream, so that the ring waves and coiled flanges charac-
teristic of this stage should make their appearance on this body as well. On
the other hand, since over the initial portion of the ablative process the
inclination of the nose of the body was considerably greater than in the first
case, the nose will have received considerably less heating than in the first
case, and hence will have receded a lesser amount. The initial inclination
must be considered to be arbitrary and therefore, for initially identical
bodies, any amount of ablation is possible between the maximum, when the ini-
tial inclination is zero, and that for initial inclinations near 90°. Tt is
believed that this explains how it can happen that initially identical tek-
tites following identical trajectories may nevertheless show quite different
depths of recession of their forward surface (cf. ref. L).

Nonspheroidal shapes.- While the preceding analysis would appear to apply
to the majority of the tektites found in southeast Australia (i.e., those of
this region whose shapes are essentially spheroidal), it does not account for
the remaining shapes, in particular the ellipsoids and "dumbbells." Figure 11
i1lustrates the three shapes, the original unablated forms being evident in the
rear view. It is interesting to speculate on possible mechanisms that might
account for the latter two forms. The fact that oblate spheroids, ellipsoids,
and dumbbells make their appearance also in the study of rotating liquids
when the contractive force is gravitation (ref. 12) suggests at first glance
that the mechanism for the formation of tektites might have been of a similar
nature. The investigation of this possibility was in fact what motivated the
present research. In the gravitational case, the spherolds and ellipsolds
form a progression of figures of equilibrium with increasing angular momentum,
while the dumbbell or pear-shaped figure makes its appearance for values of
angular momentum beyond that of the last stable ellipsoid (whether the pear-
shaped figure is itself stable is a delicate and still controversial gquestion).
Unfortunately, the case for the existence of a parallel phenomenon for the
tektites is untenable. When the contractive force is surface tension the
Tigure of equilibrium must have cylindrical symmetry about the axis of rota-
tion (ref. 14), which rules out both the ellipsoid and the dumbbell.

Two alternative phenomena may be envisaged: First, these bodies may have
had angular momenta large enough to exceed the lLimiting value for which a
stable figure exists. They would then have sought to rid themselves of part
of their angular momentum, and this process could conceivably have led to the
formation of elongated ellipscids and dumbbells, these solidifying before they
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Front view

Side view

Rear view

Figure 11.- Australian tektites having initially spheroidal, ellipsoidal, and dumbbell shape
(Photograph of casts made from originals in British Museum. )

S .
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could break apart. Let us confine attention only to specimens of a common
initial mass, and let the mass be that of a sphere of l-cm radius, a charac-
teristic shared by a large number of the specimens found in southeast
Australia. Then according to the above hypothesis, the elongates must have
had angular momenta in excess of approximately 170 dyne-cm-sec. On the other
hand, spheroids of the same mass found in southeast Australis could have had
angular momenta only of the order of 0-60 dyne-cm-sec on the presumption
already noted that their values of K2 were no larger than perhaps 0.2. Then
there is a range of angular momenta from 60 to 170 dyne-cm-sec in which fig-
ures of equilibrium consistent with values in this range apparently have not
been found in southeast Australia. As has been discussed, the dynamic behav-
ior of these bodies should have been similar to that of surviving bodies hav-
ing smaller values of angular momentum, and hence, there is no evident reason
why they should have failed to appear. That is, if the elongates had been
formed as the result of having an excess of angular momentum, then flattened
spheroids should have been formed as well and should have been found in south-
east Australia. This inconsistency leads one to doubt that the elongates
could have had such large values of angular momentum and therefore to reject
the idea that they could have been formed in the way envisaged above.

With rotation rejected as the mechanism by which the elongates acquired

their form, a second alternative is the break-up of a slowly turning Jjet of
liquid glass. As is well known

T " - (ref. 16), a jet of fluid is unstable
and will exhibit ever-increasing har-
monic undulations along its length. As
shown in the upper section of

:::::::::::::::::::::::> °°°(::::::> sketch (1), a freed drop would tend to
exhibit an ellipsoidal form, whereas,

sketch (1) as in the lower section of the sketch,
the drop would tend to the dumbbell
form. Surface tension would then cause all forms to tend to the gpheroidal.

The appearance of all three forms on the surface of the Earth may be attrib-

uted to varying rates of solidification, some bodies having solidified before

attaining their final forms.
CONCLUDING REMARKS

The tumbling motion of aerodynamically stable bodies entering planetary
atmospheres has been analyzed considering that the tumbling motion, its arrest,
and the subsequent oscillatory motion are governed by the differential equation
for the fifth Painlevé transcendent. A study of the asymptotic behavior of the
transcendent enabled the functional relationship between the envelope of oscil-
latory motion and all the significant body and planetary properties to be demon-
strated in a concise expression. Results were applied to the study of vehicles
intended for use as planetary probes and it was shown how rapid estimates could
be made of thelr probable amplitudes of oscillation in relation to aerodynamic
heating and loads. The theory was also applied to a study of the motions of the
southeast Australian tektites. It was concluded that with entry conditions
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compatible with those for a lunar origin, a considerable range of initial
turning rates and initial inclinations is admissible for the spheroidal tek-
tites within which their amplitudes of oscillatory motions are reduced to
negligible proportions before maximum heating. This complies with the evi-
dence of their having undergone ablation at essentially fixed attitudes over
the high heating portion of their trajectories. The admission of an initial
inelination from the direction of flight of the axis about which the body
turns leads to an explanation of how it can happen that initially identical
tektites following identical trajectories may show significantly different
depths of ablative recession of their forward surfaces. It is suggested that
the mechanism by which the southeast Australian tektites acquired their forms
was the break-up of a slowly turning jet of ligquid glass. ‘

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., March L, 1964
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